

# PHILIPPINE TAX ACADEMY

Determinants of Rice Prices in the Philippines: Recommendations for Policy Reforms to Reduce Supply and Price Volatility

Gil S. Beltran President

### Abstract

This study explored the determinants of rice prices in the Philippines with the aim of identifying policy reforms that can reduce supply and price volatility. Regression models and time series data were used to determine the impact of production, stock inventory, and population growth on rice prices. The results indicated that the farmgate price is influenced by the production growth, the growth of rice inventory, and the population growth while both the wholesale and retail prices are influenced by the farmgate price and the world price. These suggest that policy measures crafted to reduce supply and price volatility should primarily focus on productivity enhancements, an improved stock management program, an information system that enables stakeholders to make informed decisions, a gradual reduction of tariffs in alignment with the improvement of productivity, and an insurance system that enables a quick recovery in the event of a disaster. Recommended policy actions for these key elements are discussed.

Keywords: Policy Reforms, Regression Models, Rice Inventory, Rice Prices, Rice Production, Rice Supply

\*This technical paper is part of an ongoing study, and its contents may be modified or revised in the future based on the outcomes of its upcoming phases. Feedback, comments, and suggestions from the PTA stakeholders, researchers, academic community, and/or research institutions are welcome within 60 days from the date of posting. Contact us through email: reid@doftaxacademy.gov.ph

# Determinants of Rice Prices in the Philippines: Recommendations for Policy Reforms to Reduce Supply and Price Volatility

# INTRODUCTION

The movements of rice prices attract the headlines in the Philippines due to the importance of rice in the Filipino consumer's diet and its large share in the consumer basket. The rice price increases are monitored by news programs and are closely followed by stakeholders. Due to the political sensitivity of the rice prices, discussions on the issue elicit sharp exchanges between stakeholders that reverberate in the media, the halls of government agencies, and public places. However, the causes and consequences of such price movements are not properly discussed. This paper discusses the reasons why rice prices keep rising despite efforts to keep them low and why they dropped when the Republic Act 11203, otherwise known as the Rice Tariffication Law, was signed on February 14, 2019.

### Objective

This study examined the factors affecting rice prices in the Philippines with the aim of identifying policy measures that would lead to a more stable economic environment for rice production and consumption. It analyzed the impact of the recent rice sector reforms, particularly, the Rice Tariffication Law five years after its passage, and recommended policy actions to preserve the gains therefrom.

# LITERATURE REVIEW

Rice sector reform studies were first conducted by the Asian Development Bank (ADB) in 1986 when it offered to create a reform program called the Grains Sector Development Program (GSDP) for the Philippines. The GSDP prioritized policy and institutional reforms that centered on the following: (a) adopting a more liberalized and cost-effective approach to pricing and importing grains; (b) enhancing the management of grain buffer stocks; (c) restructuring the National Food Authority to transition from a grains marketing monopoly into a public regulatory agency and separate private sector marketing corporations; and (d) implementing a more targeted and effective food subsidy program for the poor (Asian Development Bank, 2000). In one of the ADB-commissioned studies, Cororaton (2004) concluded that market reforms are necessary and should be supported by safety nets for the adversely affected rice farmers. Unfortunately, the GSDP failed to produce the desired reforms. A study conducted by Tolentino in 2002, with a revised version in 2006, explained why the rice sector reform program failed to succeed despite its sound economic design. From the political economy perspective, the study identified the main problem as the lack of ownership of the reform due to the frequent changes in the leadership of the Department of Agriculture (DA) and the absence of strong support from the Philippine Congress (Tolentino, 2002). Similarly, Balisacan and Ravago (2003) argued that the NFA, which is the government's rice price and supply stabilization arm, "instituted interventions that exacerbated market

failures, increased the volatility of domestic prices, discouraged the private sector from investing in efficiency-enhancing distribution of storage facilities, and bred corruption and institutional sclerosis." In the 2008 ADB Validation Report on the GSDP, the project was rated as "unsuccessful."

Thereafter, several studies were carried out by a research team of the Philippine Institute of Development Studies (PIDS) composed by Briones, Galang, and Tolin from 2013 to 2017. In their first study, they debunked the 100% rice self-sufficiency program and concluded that such a claim can only succeed with the risk of "an unreasonably high price of rice" (Briones et al., 2013). This was supported by the findings of Clarete (2015) who concluded that rice self-sufficiency "is costly insurance from food insecurity risks" and that the "risk of not finding rice to buy in the world market is low considering that nearly half of the world's exportable rice comes from the ASEAN region." In their final study, Briones et al. (2017) reported that "the preferred option is to pursue tariffication, with revenues earmarked as a safety net for rice farmers and that "a 35-percent tariff rate seems appropriate as a tariff equivalent." This study was liberally quoted by the Department of Finance (DOF) in its position paper presented to the Philippine Congress and in its DOF Economic Bulletin on rice sector reform during the discussions on the rice tariffication bill which started in 2017 (Department of Finance, 2017). A recent study by Dait (2023) suggested that, to maintain the country's access to rice security, a long-term agricultural strategy should be institutionalized that focuses on increasing the land area used for rice production, promoting the use of irrigation, and utilizing other inputs aside from inorganic fertilizers. Moreover, proactive climate variability adaption measures are required to mitigate the long-term effects of changes in temperature and rainfall on rice production in the Philippines (Dait, 2023).

### Significance of the Rice Market

In the Philippines, rice is the staple food in the diet. It accounts for 25% of the consumer basket, the highest among Asian countries (Ganbold, 2022). Rice production accounts for 17% of total agricultural output and employs 2.4 million Filipino farmers (Philippine Statistics Authority, 2020). In particular, rice farms account for 4.8 million hectares out of 13.42 million hectares under agricultural crop cultivation, constituting 35.8% of the country's total land area devoted to agriculture (Philippine Statistics Authority, 2020). However, decades of poor policy implementation and management have led to high levels of trade protection, high production costs, and high retail prices for Filipino consumers. At the same time, the intensified climate change and the present war in Ukraine have destabilized the rice supply, made prices unstable, and pushed the marginal rice farmers and the poor consumers further to extreme poverty.

The domestic rice market is supplied by products sourced from both the domestic production and the imports. From 1990 to 2022, the domestic rice production was increased by 2.4% annually while the consumption rose by 2.9%. The share of the domestic production to total supply decreased from 91% to 77%. As a result, the weight of the imported rice in the consumer basket has risen from 9% to 23% as shown in Table 1. When India, the biggest rice exporter, implemented a rice export ban on non-Basmati rice in September 2023, to protect its domestic consumers, world rice prices jumped to US\$536/MT, pushing up the domestic

rice prices. This was a repeat of the 2008 event when the world prices of rice rose to US\$700/MT due to a similar ban induced by a sharp fall in production caused by drought (Table 1).

The domestic production is protected by tariffs. A 35% tariff on rice imports<sup>1</sup> effectively sets the domestic retail price of rice at levels higher than the world price. Before the passage of the Rice Tariffication Law, quantitative restrictions (QRs) before 2019, pushed the retail price by percentages to as high as 288% than the tariff rate in 2001. Nonetheless, the National Government subsidy amounting to 2.5% of GDP (Jha and Mehta, 2008) reduced the retail price to 91% in 2008 and 125% in 2009 of world price (Table 2).

From 1990 to 2002, the domestic rice production increased by 2.3%. However, the production growth has been declining from 2.6% in 1990-2000 to 2.2% in 2000-2010 and further went down to 1.9% in 2010-2020. On the other hand, rice consumption grew by 2.5% in 1990-2000, 3.5% in 2000-2010, and declined to 1.4% in 2010-2020. Comparably, the population grew by 1.7% annually and slipped to 1.4% in the decade 2010-2020. Thus, the consumption growth outstripped both the production and the population growth during this period.

### **Rice Prices**

The Philippine Statistics Authority (PSA) monitors three categories of rice prices, to wit:

- 1. farmgate price;
- 2. wholesale price; and
- 3. retail price.

The farmgate price of dry palay (rough rice) is the price at which farmers sell unmilled product to traders, excluding the selling and transport costs. On the other hand, the wholesale price is the price at which traders sell to retailers who buy the product in large volumes. The retail price is the price at which retailers sell the product to consumers. The consumers are the end users of the product, buying the product without reselling it. For simplicity, this study used the average price in the Philippines as reported by the PSA.

For world rice prices, the Thailand export price is used as reported by the Thai Rice Exporters Association (TREA) on its website. A similar price is reported by the International Monetary Fund (IMF) in its publication, *International Financial Statistics*. The price of white rice, 5% broken among different rice types, was chosen because it approximates the average import price of the Philippines from Thailand. These prices are expressed in the current Philippine pesos, except for the Thai export price which is reported in the current US\$ and needs to be converted to the Philippine pesos using the average exchange rate for the period.

<sup>&</sup>lt;sup>1</sup>Under Executive Order 135 signed in 2021, the 35% tariff rate applies on rice originating from ASEAN and non-ASEAN. For non-ASEAN, the 35% rate is temporary and is in effect only up to the end of 2024. The tariff rate for non-ASEAN reverts to 40% for minimum access volume (MAV) in-quota and 50% MAV out-quota after this date.

For the time series regression analysis, the prices are converted to constant pesos using the GDP price deflator reported by the PSA.

#### Recent Rice Sector Reform

After decades of price regulation and tight control of domestic trading by the government, the Philippines decided to pursue reform in its rice sector. Corollary to this, the Rice Tariffication Law of 2019 aims to modernize the agricultural sector and make it globally competitive by liberalizing the importation, exportation, and trading of rice. The law lifted the quantitative import restriction on rice and replaced it with tariffs. Under this law, businesses and individuals can buy rice from foreign sources after the payment of the 35%–50% tariff. The law has led to a reduction in the price of rice with the retail prices dropping from Php 44.99/Kg in 2018 to Php 41.68/Kg in 2020. However, the price has since increased to Php 47.41/Kg as of December 2023 due to higher world prices triggered by adverse climate developments in major rice-producing countries.

According to the DOF, the Rice Tariffication Law has generated Php 46.6 billion for the farm sector from 2019 to 2021. From this, the amount of Php 10 billion a year was used to fund the Rice Competitiveness Enhancement Fund (RCEF), which is the government initiative to help rice farmers improve their competitiveness and income. The RCEF program has different components, including the mechanization program which aims to increase rice farmers' productivity and profitability through the use of appropriate production and postproduction mechanization technologies. The program is implemented with the assistance of local government units (LGUs). Another RCEF component is the credit facility which covers farmers listed in the Registry System for Basic Sectors in Agriculture (Department of Agriculture, n.d.).

The production cost of rice dropped from Php 11.76/Kg in 2018 to Php 11.45/Kg in 2019, a 2.6% decline in current peso terms. Using the GDP deflator index, the production cost declined from Php 11.48/Kg (2017=100) to P10.95/Kg in 2021, a 4.6% reduction. The yield per hectare also rose from 3,972 Kg to 4,045 Kg, 1.8% higher just after a year. It has since increased further to 4,154 Kg in 2021, a 4.5% improvement over 3 years (Table 3).

A more competitive rice market has also emerged with less price and import quantity regulation by the Department of Agriculture, narrowing down the price margins of rice traders. Since 2019, the domestic wholesale price of rice has declined from 179% of the world price (in this case, the Thailand price) to 137% in 2023, the price margin closer to the tariff imposed on imported rice. The ratio of retail price to world market price also declined from 197% to 148 %. The ratio of retail price to farmgate price has also narrowed from 252.1% to 208.5% (Table 2C).

### METHODOLOGY

A regression analysis of rice prices was conducted to identify variables that need to be addressed by policy action. The Data for the farmgate, wholesale and retail prices; rice production and stock inventory; and rice consumption and population growth were taken from the reports of the DA and the PSA. Regression models and time series data were used to determine the impact of production, stock inventory, and population growth on rice prices.

### Results

### Regression Analysis of Rice Prices

What are the factors that determine domestic rice prices? The regression analysis using data from 2000 to 2023 suggested that:

1. The farmgate price is influenced by the production growth, the growth of rice inventory, and the population growth.

Equation 1:

| e                         | 40.03 In population - | 8.75 In production – 2.87 | ' In stock inventory |
|---------------------------|-----------------------|---------------------------|----------------------|
| price of<br>rice          | t = 4.41              | t = -2.86                 | t = -1.4             |
| Adj R <sup>2</sup> = 0.90 | n =24                 | D.W. = 1.85               |                      |

The independent variables population and production showed significant t-values at 1% level of significance while the stock inventory growth showed a 17% level of significance. The deviation is due to a high correlation (0.72) between the stock inventory and the production using the 1990 to 2023 data. This is expected because the production contributes to a part of the annual increment in-stock inventory.

Alternative equations regressing the production and the stock inventory separately showed both independent variables registering higher t-values.

| Equation 1.1:             |                     |                         |
|---------------------------|---------------------|-------------------------|
| -                         | 41.44 In population | n – 13.62 In production |
| price of<br>rice          | t = 5.56            | t = -5.09               |
| Adj R <sup>2</sup> = 0.90 | n= 24               | D.W. = 1.77             |

In Equation 1.1, all independent variables are significant at 1% level of significance. Replacing the production with the rice stock inventory in this equation, using the same database, resulted in higher t-ratios, as follows: Equation 1.2: Farmgate = 10.56 ln population – 4.36 ln production price of t = 3.28 t = 2.29Adj R<sup>2</sup> = 0.87 n = 24 D.W. = 1.85

The adjusted  $R^2$  was slightly lower than in Equation 1.1 but the t-values of both the population and the stock inventory remained significant at 1% and 3% level of significance, respectively.

The wholesale price is influenced by the farmgate price and the world price as evident in the Equation 2 results. The coefficients of the farmgate price and the world export price reflect their relative shares in the consumption basket.

Equation 2:

| Wholesale =               | 1.5 farmgate price + 0.24 world export price |             |  |  |  |  |
|---------------------------|----------------------------------------------|-------------|--|--|--|--|
| price                     | t = 12.25                                    | t = 1.70    |  |  |  |  |
| Adj R <sup>2</sup> = 0.94 | n = 24                                       | D.W. = 1.74 |  |  |  |  |

2. The retail price is influenced by both the farmgate price and the world price.

| Equation 3:<br>Retail    |   | 1.85 farmgate price · | + 0.24 world export price |
|--------------------------|---|-----------------------|---------------------------|
| price                    |   | t = 17.52             | t = 2.77                  |
| Adj R <sup>2</sup> = 0.9 | 4 | n = 24                | D.W. = 1.63               |

All independent variables are significant at 1% level of significance.

The Philippines is a part of the world rice market with the domestic prices heavily influenced by developments in the world market. The coefficient for world export price is 0.24 for both the wholesale price and the retail price, which is almost the same as the share of imported rice (0.23) in the domestic market in 2022. No amount of domestic price and import quantity regulation could lower the price down the farmgate price and world export price without a substantial subsidy, which the country cannot afford.

# DISCUSSION

The regression results indicate that the ideal programs for the rice sector should include these key elements: productivity enhancements, an improved stock management program, an information system that enables stakeholders to make informed decisions, a gradual reduction of tariffs in alignment with the improvement of productivity, and an insurance system that enables a quick recovery in the event of a disaster.

#### a. Productivity enhancements

A rice productivity program that fosters efficient farm yields through better seeds, modern farm implements and practices, and more irrigation facilities would contribute to price stability. For example, a Filipino company SL Agritech Corp., which is reportedly the largest seed producer in Asia, is marketing a hybrid rice seed variety called SL8H. Based on farm testing conducted in Iloilo, SL8H could raise yield from 4.154 MT/ha in 2021 to 10–12 MT/ha. This variety has a potential to boost productivity by 241 % to 289%.

The use of new milling technology, modern drier, or mechanical harvester would reduce wastage and increase recovery from 60% to 65%. This could enhance the production efficiency by 8.3%. (Department of Finance, 2017). Since manual harvesting takes more time and is usually more expensive, especially during the harvest season when the demand for workers surges, the use of farm machinery by farmers' cooperatives allows farmers to harvest quickly whenever a strong typhoon approaches an area. This also holds true for areas that are prone to drought or other natural disaster.

Rice production is water-intensive. Existing rice varieties consume, on average, about 2,500 liters of water supplied either by rainfall and/or irrigation to a rice field to produce 1 Kg of palay (rough rice). According to the International Rice Research Institute (IRRI), "these 2,500 liters account for all the outflows of evapotranspiration, seepage, and percolation" (Bouman, 2008). This requires more efficient rainfall storage and water management in the country's dams. The release of excess water from dams that flood river basins during the rainy season is better avoided by reengineering the country's dam systems to expand storage capacity.

Irrigation facilities may also need to expand. It takes 115 days from planting to harvesting a rice crop (Tan, 2021). An irrigated rice farm can therefore have as many as three harvest cycles a year as opposed to rainfed farms which can only support a single cropping cycle in a year. Irrigation could potentially increase harvest by thrice in 1.46 million hectares of unirrigated rice farms in the country (PSA, 2023 as cited by the Philippine Rice Research Institute), raising the overall production in the country by 91.3%. In line with this, the areas of irrigable farms should be evaluated to ensure productivity improvement. Likewise, assuming 2017 prices, a Php 4 billion budget annually for the National Irrigation Authority (NIA) could raise irrigation coverage by 1.3M hectares (Department of Finance, 2017).

Furthermore, minimizing wastage across rice production, distribution, and consumption among different institutions involved in the rice business could help lower costs and raise viability. Cost reduction measures such as better drying, milling, and handling facilities, and better farm-to-market roads and ports will enhance the competitiveness of rice farming and trading. Additionally, consumers should be educated on proper rice handling and storage to avoid wastage, lengthen the shelf life, and preserve the nutrients, flavor, and overall product quality. This could reduce an estimated **Php 7.27 billion** worth of rice in a year from being wasted in the country based on the 2008 data. This is equivalent to 12.2% of the country's total rice imports which could feed around 2.5 million Filipinos in a year. In 2016, the PSA cited "an average individual wastage of around 335 grams from annual rice leftover." Expanding the RICEponsible campaign to beyond the 42 LGUs presently involved can promote practices for more efficient rice consumption to a wider audience (Philippine Rice Research Institute, 2017).

Professionalizing rice farming by tapping research findings and keeping farmers updated on the latest good farming practices would also contribute to better results. For instance, with DA as a proponent, research on rice varieties that consume less volume of water and endure higher temperatures is a step in the right direction (Department of Agriculture, n.d.). A better agricultural extension program is also necessary to implement scientific farming at the grassroots level. A rice production growth that exceeds the annual population growth which is down to 1.4% per year could also ease the demand and reduce pressures on the farmgate price. It is worth noting that rice consumption has grown by 2.2% annually from 2000 to 2002, resounding the need for better rice production.

#### b. Rice stock management

A better rice stock management that capitalizes on better domestic production levels would contribute to stable prices. Enabling the NFA to keep a stable buffer will dampen attempts at speculation and price rigging. Based on Equation 1.2, a percentage rise or drop in the average stock inventory, respectively, decreases or raises the farmgate price by 4.36%. The NFA may need to set a benchmark for the ideal stock inventory that quells supply and price manipulation.

#### c. Information system

An up-to-date information system that allows stakeholders in the industry to monitor prices throughout the country similar to the TREA website and enables stakeholders to tap favorable prices in rice-deficit areas would help in making the rice market more vibrant and competitive. This could also help stabilize prices in these areas.

#### d. Tariff policy

Due to the negative impact of high rice prices on poor consumers and the nutritional status of children, the 35% tariff may be gradually reduced during the medium term in alignment with productivity improvement. The latest data show that the production cost of rice in the Philippines is 7.0% higher than the arithmetic average for six (6) Asian countries (Table 4). The yield per hectare is also 10.6% lower than the average in these countries (Table 5). Using December 2023 prices and assuming 7% freight and insurance charges which are the average for all traded commodities, the milled rice production cost of Php 18.64/Kg as of 2021 should decrease by Php 3.83/Kg to bring the tariff rate down to 10%. At this level, the average production cost should fall somewhere between the production costs of Thailand and India.

#### e. Crop insurance

Due to the increasing frequency of extreme weather phenomena stemming from climate change, the role of a viable and sustainable index-based crop insurance system for farmers becomes crucial. With a crop insurance system in place, farmers hit by natural disasters can claim benefits to enable them to replant and recover after an adverse event. Equally, a subsidy fund may need to be set up by Philippine Crop Insurance Corp. (PCIC) to help the poorest of the poor farmers. While the rest of the farmers who can afford the insurance premium can be covered by the private sector insurance industry. The PCIC may need to retool itself to be able to manage this fund well and create and maintain a list of qualified beneficiaries. These considerations could help stabilize the rice supply.

### CONCLUSION AND RECOMMENDATIONS

The results of regression analyses indicated that the farmgate price is influenced by the production growth, the growth of rice inventory, and the population growth while both the wholesale and retail prices are influenced by the farmgate price and the world price. These suggest that policy measures addressing supply and price volatility should primarily focus on improving rice production and inventory stock management. In addition, policymakers and administrators in the rice sector, as well as lawmakers, should consider introducing gradual adjustments on tariffs aligned with the rice production improvement. The Philippine government, aside from providing monetary and non-monetary assistance to farmers, should also ensure that an equitable insurance system is in place to help rice farmers recover during an unexpected loss due to world rice market volatility, climate changes, or natural disasters. Aspiring for a long-term solution, the government should invest in expanding the capacity of the country's dam and irrigation systems to provide adequate water supply to farmland during the dry season. Furthermore, a vibrant information system that would allow rice stakeholders to monitor prices across the country should be established. This could give them an advantage in favorable prices in regions where rice shortage exists, making the market more competitive.

# STATISTICAL APPENDICES

| Year | Production | n and Imports | Local      | Imports |
|------|------------|---------------|------------|---------|
| icai | (MT)       | (MT)          | Production | as % of |
|      | (111)      | (1011)        | as % of    | Supply  |
|      |            |               | Supply     | Sabbiy  |
| 1990 | 6,095      | 606           | 91.0%      | 9.0%    |
| 1991 | 6,326      | -             | 100.0%     | 0.0%    |
| 1992 | 5,970      | 1             | 100.0%     | 0.0%    |
| 1993 | 6,170      | 202           | 96.8%      | 3.2%    |
| 1994 | 6,892      |               | 100.0%     | 0.0%    |
| 1995 | 6,894      | 264           | 96.3%      | 3.7%    |
| 1996 | 7,379      | 867           | 89.5%      | 10.5%   |
| 1997 | 7,370      | 722           | 91.1%      | 8.9%    |
| 1998 | 5,595      | 2,171         | 72.0%      | 28.0%   |
| 1999 | 7,708      | 834           | 90.2%      | 9.8%    |
| 2000 | 8,103      | 639           | 92.7%      | 7.3%    |
| 2001 | 8,472      | 8,081         | 51.2%      | 48.8%   |
| 2002 | 8,679      | 11,967        | 42.0%      | 58.0%   |
| 2003 | 8,829      | 886           | 90.9%      | 9.1%    |
| 2004 | 9,481      | 1,001         | 90.5%      | 9.5%    |
| 2005 | 9,550      | 1,822         | 84.0%      | 16.0%   |
| 2006 | 10,024     | 1,716         | 85.4%      | 14.6%   |
| 2007 | 10,621     | 1,806         | 85.5%      | 14.5%   |
| 2008 | 10,997     | 2,432         | 81.9%      | 18.1%   |
| 2009 | 10,633     | 1,755         | 85.8%      | 14.2%   |
| 2010 | 10,315     | 2,378         | 81.3%      | 18.7%   |
| 2011 | 10,911     | 707           | 93.9%      | 6.1%    |
| 2012 | 11,793     | 1,041         | 91.9%      | 8.1%    |
| 2013 | 12,059     | 398           | 96.8%      | 3.2%    |
| 2014 | 12,405     | 1,087         | 91.9%      | 8.1%    |
| 2015 | 11,870     | 1,478         | 88.9%      | 11.1%   |
| 2016 | 11,528     | 605           | 95.0%      | 5.0%    |
| 2017 | 12,607     | 885           | 93.4%      | 6.6%    |
| 2018 | 12,469     | 2,002         | 86.2%      | 13.8%   |
| 2019 | 12,305     | 3,118         | 79.8%      | 20.2%   |
| 2020 | 12,619     | 2,219         | 85.0%      | 15.0%   |
| 2021 | 13,054     | 2,967         | 81.5%      | 18.5%   |
| 2022 | 12,921     | 3,863         | 77.0%      | 23.0%   |

Table 1. Rice Production and Imports, 1990-2022.

|      |        | Export   | Export   | FOB Export | FOB Export |
|------|--------|----------|----------|------------|------------|
| Year |        | Price/MT | Price/Kg | Price/Kg   | Price/Kg   |
|      |        |          |          |            | Php        |
|      |        | USD      | USD      | Php        | 2018=100   |
|      |        |          |          | White 5%   |            |
|      |        |          |          | brokens    |            |
| 2000 |        | 203.69   | 0.20     | 8.33       | 16.16      |
| 2001 |        | 172.71   | 0.17     | 6.75       | 12.34      |
| 2002 |        | 191.83   | 0.19     | 8.48       | 14.83      |
| 2003 |        | 199.46   | 0.20     | 10.17      | 17.24      |
| 2004 |        | 245.78   | 0.25     | 12.68      | 20.22      |
| 2005 |        | 287.81   | 0.29     | 15.60      | 23.37      |
| 2006 |        | 303.52   | 0.30     | 17.01      | 24.17      |
| 2007 |        | 332.39   | 0.33     | 18.31      | 24.36      |
| 2008 |        | 700.2    | 0.70     | 35.93      | 45.89      |
| 2009 |        | 589.38   | 0.59     | 27.20      | 33.85      |
| 2010 | 520.49 | 491.72   | 0.49     | 21.87      | 26.04      |
| 2011 | 551.71 | 549.40   | 0.55     | 23.79      | 27.19      |
| 2012 | 580.24 | 573.48   | 0.57     | 24.22      | 27.11      |
| 2013 | 519.31 | 516.81   | 0.52     | 21.94      | 24.04      |
| 2014 | 426.48 | 422.83   | 0.42     | 18.77      | 19.95      |
| 2015 | 380.05 | 385.91   | 0.39     | 17.56      | 18.78      |
| 2016 | 388.26 | 394.81   | 0.39     | 18.75      | 19.79      |
| 2017 | 399.07 | 398.93   | 0.40     | 20.11      | 20.62      |
| 2018 | 403.08 | 420.56   | 0.42     | 22.15      | 22.15      |
| 2019 | 396.51 | 417.72   | 0.42     | 21.64      | 20.87      |
| 2020 | 477.84 | 496.71   | 0.50     | 24.64      | 23.53      |
| 2021 | 441.96 | 458.17   | 0.46     | 22.57      | 21.07      |
| 2022 | 419.06 | 436.58   | 0.44     | 23.79      | 21.07      |
| 2023 | 512.20 | 553.79   | 0.55     | 30.08      | 25.30      |

| Table 2A. | Thailand | Fynort | Price | of Rice  |
|-----------|----------|--------|-------|----------|
| Table ZA. | mananu   | LAPUIL | FIICE | UT INICE |

\*Free-on-Board (FOB)

Sources: Thailand Rice Exporters Association & Philippine Statistics Authority

| Table 2B. Philippines' Wholesale and Retail Rice Prices. |           |           |          |          |
|----------------------------------------------------------|-----------|-----------|----------|----------|
|                                                          | Wholesale | Wholesale | Retail   | Retail   |
| Year                                                     | Price/Kg  | Price/Kg  | Price/Kg | Price/Kg |
|                                                          |           | Php,      |          | Php,     |
|                                                          | Php       | 2018=100  | Php      | 2018=100 |
|                                                          |           |           | Well     | Milled   |
| 2000                                                     | 17.77     | 34.48     | 19.45    | 37.74    |
| 2001                                                     | 17.61     | 32.20     | 19.43    | 35.53    |
| 2002                                                     | 18.21     | 31.86     | 19.98    | 34.96    |
| 2003                                                     | 18.3      | 31.01     | 20.2     | 34.23    |
| 2004                                                     | 19.12     | 30.48     | 21.04    | 33.54    |
| 2005                                                     | 20.93     | 31.36     | 22.88    | 34.28    |
| 2006                                                     | 21.39     | 30.39     | 23.56    | 33.48    |
| 2007                                                     | 22.89     | 30.46     | 24.72    | 32.89    |
| 2008                                                     | 29.81     | 38.07     | 32.71    | 41.78    |
| 2009                                                     | 31.17     | 38.79     | 34.12    | 42.46    |
| 2010                                                     | 31.72     | 37.77     | 34.34    | 40.89    |
| 2011                                                     | 32.01     | 36.57     | 34.73    | 39.68    |
| 2012                                                     | 32.70     | 36.59     | 35.30    | 39.50    |
| 2013                                                     | 34.50     | 37.80     | 36.87    | 40.40    |
| 2014                                                     | 39.36     | 41.84     | 42.32    | 44.98    |
| 2015                                                     | 38.31     | 40.96     | 42.04    | 44.95    |
| 2016                                                     | 38.10     | 40.21     | 41.72    | 44.03    |
| 2017                                                     | 38.91     | 39.89     | 42.14    | 43.21    |
| 2018                                                     | 42.42     | 42.42     | 44.99    | 44.99    |
| 2019                                                     | 38.80     | 37.43     | 42.73    | 41.22    |
| 2020                                                     | 37.87     | 36.16     | 41.68    | 39.80    |
| 2021                                                     | 37.70     | 35.20     | 43.18    | 40.31    |
| 2022                                                     | 38.36     | 33.97     | 43.58    | 38.60    |
| 2023                                                     | 42.72     | 35.94     | 47.41    | 39.88    |
|                                                          |           |           |          |          |

Table 2B. Philippines' Wholesale and Retail Rice Prices.

| Year | Farmgate    | Farmgate    | Wholesale | Retail   | Retail Price as |
|------|-------------|-------------|-----------|----------|-----------------|
|      | Price       | Price       | as % of   | Price as | % of            |
|      | (Dry Palay) | (Dry Palay) | Thailand  | % of     | Farmgate        |
|      |             |             | Export    | Thailand | Price           |
|      |             |             | Price     | Export   |                 |
|      |             |             |           | Price    |                 |
|      |             | Php,        |           |          |                 |
|      | Per Kg      | 2018=100    |           |          |                 |
| 2000 | 8.42        | 16.34       | 2.13      | 2.34     | 231.0%          |
| 2001 | 8.17        | 14.94       | 2.61      | 2.88     | 237.8%          |
| 2002 | 8.82        | 15.43       | 2.15      | 2.36     | 226.5%          |
| 2003 | 8.84        | 14.98       | 1.80      | 1.99     | 228.5%          |
| 2004 | 9.45        | 15.06       | 1.51      | 1.66     | 222.6%          |
| 2005 | 10.43       | 15.63       | 1.34      | 1.47     | 219.4%          |
| 2006 | 10.46       | 14.86       | 1.26      | 1.39     | 225.2%          |
| 2007 | 11.22       | 14.93       | 1.25      | 1.35     | 220.3%          |
| 2008 | 14.13       | 18.05       | 0.83      | 0.91     | 231.5%          |
| 2009 | 14.63       | 18.21       | 1.15      | 1.25     | 233.2%          |
| 2010 | 14.81       | 17.63       | 1.45      | 1.57     | 231.9%          |
| 2011 | 15.05       | 17.20       | 1.35      | 1.46     | 230.8%          |
| 2012 | 15.92       | 17.81       | 1.35      | 1.46     | 221.7%          |
| 2013 | 16.53       | 18.11       | 1.57      | 1.68     | 223.0%          |
| 2014 | 19.46       | 20.68       | 2.10      | 2.25     | 217.5%          |
| 2015 | 17.55       | 18.76       | 2.18      | 2.39     | 239.5%          |
| 2016 | 17.76       | 18.74       | 2.03      | 2.22     | 234.9%          |
| 2017 | 18.08       | 18.54       | 1.94      | 2.10     | 233.1%          |
| 2018 | 20.09       | 20.09       | 1.91      | 2.03     | 223.9%          |
| 2019 | 16.95       | 16.35       | 1.79      | 1.97     | 252.1%          |
| 2020 | 16.76       | 16.00       | 1.54      | 1.69     | 248.7%          |
| 2021 | 16.76       | 15.65       | 1.67      | 1.91     | 257.6%          |
| 2022 | 17.44       | 15.45       | 1.61      | 1.83     | 249.9%          |
| 2023 | 20.90       | 17.58       | 1.42      | 1.58     | 226.8%          |

| Table 3. Production | Cost and Yields |
|---------------------|-----------------|
|---------------------|-----------------|

| Year | Cost/Kg | Cost/Kg  | Yield/ha | GROSS           | RETURNS         | NET F  | RETURNS         | Net      |
|------|---------|----------|----------|-----------------|-----------------|--------|-----------------|----------|
|      | Php     | Deflated | Kg       | Php             | Deflated        | Php    | Deflated        | Profit - |
|      |         | using    |          |                 | using           |        | using GDP       | Cost     |
|      |         | GDP      |          |                 | GDP             |        | Deflator        | Ratio    |
|      |         | Deflator |          |                 | Deflator        |        |                 |          |
|      |         | 2017=100 |          |                 | 2017=100        |        | 2017=100        |          |
| 2002 | 6.7     | 11.20    | 3,188    | 27,483          | 45,937          | 6,126  | 10,240          | 0.29     |
| 2003 | 6.65    | 10.78    | 3,370    | 29,791          | 48,294          | 7,387  | 11,975          | 0.33     |
| 2004 | 7.05    | 11.08    | 3,513    | 33,198          | 52,172          | 8,428  | 13,245          | 0.34     |
| 2005 | 7.63    | 11.32    | 3,588    | 37,423          | 55,516          | 10,037 | 14,890          | 0.37     |
| 2006 | 7.61    | 10.65    | 3,684    | 38,535          | 53,924          | 10,498 | 14,690          | 0.37     |
| 2007 | 7.86    | 10.46    | 3,801    | 42,647          | 56 <i>,</i> 754 | 12,785 | 17,014          | 0.43     |
| 2008 | 9.62    | 12.04    | 3,770    | 53,270          | 66 <i>,</i> 652 | 17,002 | 21,273          | 0.47     |
| 2009 | 10.81   | 13.00    | 3,409    | 50,324          | 60,539          | 13,483 | 16,220          | 0.37     |
| 2010 | 10.5    | 12.32    | 3,622    | 53 <i>,</i> 859 | 63,173          | 15,830 | 18 <i>,</i> 568 | 0.42     |
| 2011 | 10.88   | 12.23    | 3,678    | 55 <i>,</i> 795 | 62,727          | 15,792 | 17,754          | 0.39     |
| 2012 | 11.05   | 11.94    | 3,845    | 62,366          | 67,393          | 19,891 | 21,494          | 0.47     |
| 2013 | 11.97   | 12.67    | 3,513    | 58,878          | 62,339          | 16,818 | 17,807          | 0.4      |
| 2014 | 12.33   | 12.79    | 4,002    | 80,320          | 83,311          | 30,956 | 32,109          | 0.63     |
| 2015 | 11.95   | 12.03    | 3,898    | 67,542          | 68,016          | 20,951 | 21,098          | 0.45     |
| 2016 | 11.04   | 11.18    | 3,869    | 67,427          | 68,304          | 24,719 | 25,040          | 0.58     |
| 2017 | 11.05   | 11.05    | 4,006    | 72,950          | 72,950          | 28,699 | 28,699          | 0.65     |
| 2018 | 11.76   | 11.48    | 3,972    | 79,670          | 77,750          | 32,976 | 32,181          | 0.71     |
| 2019 | 11.45   | 10.78    | 4,045    | 68,561          | 64,544          | 22,243 | 20,940          | 0.48     |
| 2020 | 11.5    | 10.72    | 4,089    | 68,519          | 63,844          | 21,492 | 20,025          | 0.46     |
| 2021 | 12.02   | 10.95    | 4,154    | 69,600          | 63,410          | 19,680 | 17,930          | 0.39     |

Source: PSA

| Table 4. Comparative Cost of Producing 1 Kg of Palay |  |
|------------------------------------------------------|--|
| $(*Phn/Kg 2013_2014)$                                |  |

| (*PHp/Ng, 2013-2014)                  |              |             |  |  |
|---------------------------------------|--------------|-------------|--|--|
| Country                               | Unhusked     | Milled Rice |  |  |
|                                       | Rice (Palay) | Equivalent  |  |  |
| Vietnam                               | 6.53         | 9.92        |  |  |
| Thailand                              | 8.81         | 13.68       |  |  |
| India                                 | 9.87         | 14.99       |  |  |
| PHILIPPINES (2021)                    | 12.02        | 18.64       |  |  |
| China                                 | 14.08        | 21.39       |  |  |
| Indonesia                             | 15.69        | 23.67       |  |  |
| AVERAGE                               | 11.23        | 16.63       |  |  |
| Source: PIDS Policy Notes, March 2017 |              |             |  |  |

Source: PIDS Policy Notes, March 2017

\*Except the Philippines which uses 2021 data

| Table 5. Rice Yields, 2021 |      |  |  |  |
|----------------------------|------|--|--|--|
| Country Yield (MT/ha)      |      |  |  |  |
| China                      | 7.11 |  |  |  |
| Vietnam                    | 6.07 |  |  |  |
| India                      | 4.21 |  |  |  |
| Indonesia                  | 4.21 |  |  |  |
| PHILIPPINES                | 4.15 |  |  |  |
| Malaysia                   | 3.75 |  |  |  |
| Thailand                   | 2.99 |  |  |  |
| AVERAGE                    | 4.64 |  |  |  |
| Source: FAO                |      |  |  |  |

Table 6. Philippines' Rice Production and Consumption

| Year              | Production<br>Dry Palay<br>(MT) | Growth<br>(%) | Milled Rice<br>Consumption<br>(MT) | Growth<br>(%) | Population<br>Growth |       |
|-------------------|---------------------------------|---------------|------------------------------------|---------------|----------------------|-------|
| 1990              | 6,095                           |               | 6,701                              |               | 63.64                |       |
| 2000              | 8,103                           | 2.62%         | 8,742                              | 2.45%         | 76.81                | 1.72% |
| 2010              | 10,315                          | 2.22%         | 12,693                             | 3.45%         | 92.72                | 1.73% |
| 2020              | 12,619                          | 1.85%         | 14,838                             | 1.43%         | 108.3                | 1.42% |
| 2022              | 12,921                          | 1.75%         | 16,784                             | 2.17%         | 110.8                | 1.38% |
| Average<br>Growth |                                 | 2.30%         |                                    | 2.82%         |                      | 1.69% |

|      | Stock Inventory | Production  | Imports   |
|------|-----------------|-------------|-----------|
| Year | (Monthly        | Milled Rice | (MTM)     |
|      | Average in MT)  | (MT)        | (1011101) |
|      | 2,321.80        |             |           |
| 2000 | 1,826.77        | 12,389,412  | 639       |
| 2001 | 2,097.98        | 12,954,870  | 8,081     |
| 2002 | 1,896.15        | 13,270,653  | 11,967    |
| 2003 | 2,095.95        | 13,499,884  | 886       |
| 2004 | 1,917.93        | 14,496,784  | 1,001     |
| 2005 | 1,797.05        | 14,603,005  | 1,822     |
| 2006 | 2,061.46        | 15,326,706  | 1,716     |
| 2007 | 1,715.38        | 16,240,194  | 1,806     |
| 2008 | 2,178.47        | 16,815,548  | 2,432     |
| 2009 | 2,555.73        | 16,266,417  | 1,755     |
| 2010 | 3,101.90        | 15,772,319  | 2,378     |
| 2011 | 3,009.04        | 16,684,062  | 707       |
| 2012 | 2,245.02        | 18,032,525  | 1,041     |
| 2013 | 2,169.06        | 18,439,420  | 398       |
| 2014 | 2,162.33        | 18,967,826  | 1,087     |
| 2015 | 2,626.71        | 18,149,838  | 1,478     |
| 2016 | 2,886.66        | 17,627,245  | 605       |
| 2017 | 2,436.92        | 19,174,601  | 885       |
| 2018 | 2,102.03        | 14,362,711  | 2,002     |
| 2019 | 2,502.48        | 18,811,827  | 3,118     |
| 2020 | 2,417.82        | 19,294,856  | 2,219     |
| 2021 | 2,167.05        | 19,960,170  | 2,967     |
| 2022 | 2,030.25        | 19,756,392  | 3,863     |

Table 7. Philippines' Rice Stock, Production, and Imports

### References

- Asian Development Bank. (2007, December). *Grains Sector Development Program, Ioan numbers 1739/1740, Effective 2000*. https://www.adb.org/sites/default/files/project-documents//30087-phi-pcr.pdf
- Asian Development Bank. (2008, August). Validation report on Philippines: Grains Sector Development Program. https://www.adb.org/sites/default/files/evaluationdocument/35667/files/in262-08.pdf
- Balisacan, A. & Ravago, L.V. (2003). The rice problem in the Philippines: Trends, constraints, and policy imperatives. MPRA Paper. https://mpra.ub.unimuenchen.de/24865/1/MPRA\_paper\_24865.pdf
- Bouman, B. (2009, January-March). How much water does rice use? *Rice Today*, 8(1), 28-29. http://books.irri.org/RT8\_1\_content.pdf
- Briones, R. (2013, March). Impact assessment of the agricultural production support services of the Department of Agriculture on the income of poor farmers/fisherfolk: Review of the evidence. *PIDS Discussion Paper No. 2013-14.* https://www.pids.gov.ph/publication/discussion-papers/impact-assessment-of-the-agricultural-production-support-services-of-the-department-of-agriculture-on-the-income-of-poor-farmers-fisherfolk-review-of-the-evidence
- Briones, R. and Galang, I.M. (2013, January 13). Rice self-sufficiency: The dangerous dream. *Rappler*. https://www.rappler.com/business/19561-philipppine-rice-self-sufficiency-the-dangerous-dream/
- Briones, R. and Tolin, L. A. (2015, October 13). Options for supporting rice farmers under a post-QR regime: Review and assessment. *PIDS Discussion Paper No. 2015-46.* https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/pidsdps1546.pdf
- Briones, R., Galang, I.M., & Tolin, L.A. (2017, March). Quantitative restriction on rice imports: Issues and alternatives. *PIDS Policy Notes*. https://www.pids.gov.ph/publication/policynotes/quantitative-restriction-on-rice-imports-issues-and-alternatives
- Clarete, R. L. (2015). Philippine rice self-sufficiency program. In Balisacan, A.M., Uijayant, C, and Ravago, M.L. V. (Eds.). *Sustainable economic development* (pp. 329-348). Academic Press. https://doi.org/10.1016/b978-0-12-800347-3.00019-4
- Cororaton, C. (2004, June). Rice reforms and poverty in the Philippines: A CGE analysis. *ADB Institute Research Paper Series No. 57.* https://www.adb.org/sites/default/files/publication/157236/adbi-rp57.pdf

- Dait, J.M.G. (2003 June). A panel data study on factors affecting rice production in the Philippines. Universal Journal of Agricultural Research, 11(3), 547-557. https://www.hrpub.org/download/20230530/UJAR5-10431223.pdf
- Dawe, D. (2014). Rice self-sufficiency: Nature vs. nurture. In Dawe, D., Jaffee, S., & Santos, N. (Eds.). Rice in the shadow of skyscrapers: Policy choices in a dynamic east and southeast asian setting (pp. 16-22). Food and Agriculture Organization of the United Nations. https://openknowledge.worldbank.org/server/api/core/bitstreams/6a7ccb89-6410-5247-bd5e-4afc9b75bda6/content16-22
- Department of Agriculture. (n.d.). *Rice Competitiveness Enhancement Fund (RCEP)*. https://www.da.gov.ph/rice-competitiveness-enhancement-fund/
- Department of Finance. (2017, December 4). Rice sector reform. *DOF Economic Bulletin*. https://www.dof.gov.ph/wp-content/uploads/2018/11/DOF-Economic-Bulletin-on-Rice-Sector-Reform-4-December-2017.pdf
- Ganbold, S. (2022). *Philippine rice*. Statista. https://www.statista.com/topics/11682/rice-in-the-philippines/#topicOverview
- GMA Integrated News. (2023, April 13). *PhilRice: P7.2 billion of rice in PH goes to waste in a year*. https://www.gmanetwork.com/news/money/economy/866761/philrice-p7-2-billion-worth-of-rice-in-ph-goes-to-waste-in-a-year/story/
- International Monetary Fund. (n.d.). International financial statistics. https://data.imf.org/?sk=388DFA60-1D26-4ADE-B505-A05A558D9A42&sId=1479329328660
- Jha, S. & Mehta, A. (2008, December). Effectiveness of public spending: The case of rice subsidies in the Philippines. ADB Economics Working Paper Series No. 138. https://www.adb.org/sites/default/files/publication/28378/economics-wp138.pdf
- Philippine Rice Research Institute. (2017, August 3). *Pinoys urged to be more RICEponsible*. https://www.philrice.gov.ph/pinoys-urged-riceponsible/
- Philippine Rice Research Institute. (2023a). State of the rice sector in the Philippines. https://www.philrice.gov.ph/ricelytics/
- Philippine Rice Research Institute. (2023b). Area harvested. https://www.philrice.gov.ph/ricelytics/harvestareas

Philippine Statistics Authority. (n.d.). OPENSTAT. https://openstat.psa.gov.ph/

Tan, Y. (2021, May 30). From binhi to bigas: The laypersons' guide to the rice production process. *Agriculture Magazine*. https://agriculture.com.ph/2021/05/30/from-binhi-to-bigas-the-laypersons-guide-to-the-rice-production-process/

- Thai Rice Exporters Association. (2024, January). *Export rice prices*. http://www.thairiceexporters.or.th/default\_eng.htm
- Tolentino, B. (2002, June 1). Rice policy reforms in the Philippines: A political economy perspective. *PIDS Policy Notes*. https://www.pids.gov.ph/publication/policy-notes/rice-policy-reforms-in-the-philippines-a-political-economy-perspective
- Tolentino, B. (2002, June 1). The globalization of food security: Rice policy reforms in the<br/>Philippines. Philippine Journal of Development, 29(2).<br/>https://www.pids.gov.ph/publication/philippine-journal-of-development/the-<br/>globalization-of-food-security-rice-policy-reforms-in-the-philippines
- Tolentino, B. (2006, January). Food security and the threat from within: Rice policy reforms in the Philippines. *Institute of Defence and Strategic Studies*. https://www.rsis.edu.sg/wp-content/uploads/rsis-pubs/WP97.pdf

### Philippine Tax Academy

The Philippine Tax Academy (PTA) is a specialized institution that provides the appropriate education, training, skills and values to tax and customs collectors and administrators who disseminate tax laws, regulations, guidelines and relevant information to the public in line with the policies of the State.

The Academy was established and created under Republic Act No. 10143 and mandated to train, mold, enhance and to develop capabilities of tax collectors and administrators to help improve their tax collection efficiency to become competent and effective public servants.

# CAVEAT

No Part of this Technical Paper may be used or reproduced by any means without getting approval from the PTA.

#### **Philippine Tax Academy**

7th Floor, EDPC Building, Roxas Boulevard corner Pablo Ocampo Sr. Street, Manila 1004 Tel. Nos. (+632)8523-6051, (+632)5317-6367 Email: info@doftaxacademy.gov.ph